Important: Use custom search function to get better results from our thousands of pages

Use " " for compulsory search eg:"electronics seminar" , use -" " for filter something eg: "electronics seminar" -"/tag/" (used for exclude results from tag pages)

Ask More Info Of  A Seminar Ask More Info Of A Project Post Reply  Follow us on Twitter
03-11-2012, 04:58 PM
Post: #1


.docx  Heat Exchanger..docx (Size: 237.99 KB / Downloads: 60)


A device designed to transfer heat between two physically separated fluids; generally consists of a cylindrical shell with longitudinal tubes; one fluid flows on the inside, the other on the outside.
Any of several devices that transfer heat from a hot to a cold fluid. In many engineering applications, one fluid needs to be heated and another cooled, a requirement economically accomplished by a heat exchanger. In double-pipe exchangers, one fluid flows inside the inner pipe, and the other in the annular space between the two pipes. In shell-and-tube exchangers, many tubes are mounted inside a shell; one fluid flows in the tubes and the other flows in the shell, outside the tubes. Special-purpose devices such as boilers, evaporators, superheaters, condensers, and coolers are all heat exchangers. Heat exchangers are used extensively in fossil-fuel and nuclear power plants, gas turbines, heating and air conditioning, refrigeration, and the chemical industry. See also cooling system.
A device used to transfer heat from a fluid flowing on one side of a barrier to another fluid (or fluids) flowing on the other side of the barrier.
When used to accomplish simultaneous heat transfer and mass transfer, heat exchangers become special equipment types, often known by other names. When fired directly by a combustion process, they become furnaces, boilers, heaters, tube-still heaters, and engines. If there is a change in phase in one of the flowing fluids—condensation of steam to water, for example—the equipment may be called a chiller, evaporator, sublimator, distillation-columnreboiler, still, condenser, or cooler-condenser.
Heat exchangers may be so designed that chemical reactions or energy-generation processes can be carried out within them. The exchanger then becomes an integral part of the reaction system and may be known, for example, as a nuclear reactor, catalytic reactor, or polymerize.
Heat exchangers are normally used only for the transfer and useful elimination or recovery of heat without an accompanying phase change. The fluids on either side of the barrier are usually liquids, but they may also be gases such as steam, air, or hydrocarbon vapors; or they may be liquid metals such as sodium or mercury. Fused salts are also used as heat-exchanger fluids in some applications.
Most often the barrier between the fluids is a metal wall such as that of a tube or pipe. However, it can be fabricated from flat metal plate or from graphite, plastic, or other corrosion-resistant materials of construction.

Types of heat exchangers

Shell and tube heat exchangers consist of a series of tubes. One set of these tubes contains the fluid that must be either heated or cooled. The second fluid runs over the tubes that are being heated or cooled so that it can either provide the heat or absorb the heat required. A set of tubes is called the tube bundle and can be made up of several types of tubes: plain, longitudinally finned, etc. Shell and Tube heat exchangers are typically used for high pressure applications (with pressures greater than 30 bar and temperatures greater than 260°C). This is because the shell and tube heat exchangers are robust due to their shape.
There are several thermal design features that are to be taken into account when designing the tubes in the shell and tube heat exchangers. These include:
Tube diameter: Using a small tube diameter makes the heat exchanger both economical and compact. However, it is more likely for the heat exchanger to foul up faster and the small size makes mechanical cleaning of the fouling difficult. To prevail over the fouling and cleaning problems, larger tube diameters can be used. Thus to determine the tube diameter, the available space, cost and the fouling nature of the fluids must be considered.

Plate heat exchanger

Another type of heat exchanger is the plate heat exchanger. One is composed of multiple, thin, slightly-separated plates that have very large surface areas and fluid flow passages for heat transfer. This stacked-plate arrangement can be more effective, in a given space, than the shell and tube heat exchanger. Advances in gasket and brazing technology have made the plate-type heat exchanger increasingly practical. In HVAC applications, large heat exchangers of this type are called plate-and-frame; when used in open loops, these heat exchangers are normally of the gasketed type to allow periodic disassembly, cleaning, and inspection. There are many types of permanently-bonded plate heat exchangers, such as dip-brazed and vacuum-brazed plate varieties, and they are often specified for closed-loop applications such as refrigeration. Plate heat exchangers also differ in the types of plates that are used, and in the configurations of those plates. Some plates may be stamped with "chevron" or other patterns, where others may have machined fins and/or grooves


Moving bed heat exchangers essentially exist of a huge number of square tubes which are arranged in heat exchanger packages one above the other. The ends of the tubes are closed with end plates. Behind the plates are reversing chambers for the cooling or heating medium. The sides of the external tubes are equipped with steel plate strips which hold the product in the shaft. To protect the environments or the product quality, doors that close the side walls can be fitted. Above and under the heat exchanger are feed respectively discharge hoppers. Different conveyor facilities for bulk materials, as for example conveying screws, bucket conveyors or similar are downstream systems.


The cooling or warming of the bulk materials in the Moving bed Cooler happens indirectly; via water, thermal oil or steam. The heating or cooling medium flows through the square tubes. Medium and product flow in cross countercurrent to each other. The coolers work according to the Moving Bed Principle. I.e. the product forms a product column which flows continuously down between the cooling pipes. A discharge bottom with variable openings regulates dwell time and flow rate.


Moving bed heat exchangers can be used for cooling or warming of all free-flowing bulk materials which correspond to the requirements of the apparatus, concerning grain size and angle of repose. The heat exchangers often can be found after rotary kilns and dryers to cool e.g. mineral (quartz sand, Ilmentit etc.) or chemical products (fertilizer, soda etc.). The entry temperatures of the products can reach up to 1200 °C.

Technical specifications

Moving bed heat exchangers have a relatively compact construction. Because of the working principle they need only a small base. However, depending on their application they can build relatively high. Because of having only few moved parts they have low electrical requirements and are low-maintenance. Problems with noise or dust contamination of the environments do not occur.

Monitoring and maintenance

Integrity inspection of plate and tubular heat exchanger can be tested in situ by the conductivity or helium gas methods. These methods confirm the integrity of the plates or tubes to prevent any cross contamination and the condition of the gaskets.
Condition monitoring of heat exchanger tubes may be conducted through Nondestructive methods such as eddy current testing.
The mechanics of water flow and deposits are often simulated by computational fluid dynamics or CFD. Fouling is a serious problem in some heat exchangers. River water is often used as cooling water, which results in biological debris entering the heat exchanger and building layers, decreasing the heat transfer coefficient. Another common problem is scale, which is made up of deposited layers of chemicals such ascalcium carbonate or magnesium carbonate.
Share HEAT EXCHANGER SEMINAR REPORT To Your Friends :- Seminar Topics Bookmark
Post Reply 

Marked Categories : double pipe heat exchanger, heat exchanger designs for gas turbine seminar report, moving bed heat exchangers, double pipe heat exchanger by using cfd ppt, computational fluid dynamics applications in hest exchangersand chillers in ppt, heat exchanger testing project report, project report on heat exchangers, seminar on multi stream heat exchanger in pdf format, integrity inspection of plate and tubular heat exchanger can be tested in situ by the conductivity, seminar on heat exchanger with ppt, seminar or thesis plate type heat exchanger pdf, annular combustion chamber gas turbine seminar report, seminar report on shell and tube heat exchanger,

Quick Reply
Type your reply to this message here.

Image Verification
Image Verification
(case insensitive)
Please enter the text within the image on the left in to the text box below. This process is used to prevent automated posts.

Possibly Related Threads...
Thread: Author Replies: Views: Last Post
  List of mechanical Seminar topics4 computer science crazy 45 300,536,707 20-01-2017 06:22 PM
Last Post: junaidshahid
  WAVE ENERGY CONVERTER full report project report tiger 1 2,292 12-01-2017 05:07 AM
Last Post: Guest
  Automatic Railway Gate Control System FULL REPORT seminar ideas 15 20,381 20-12-2016 07:00 AM
Last Post: sravya1869
  LIST OF SEMINAR TOPICS FOR FINAL YEAR STUDENTS seminar surveyer 9 58,639 18-10-2016 04:51 PM
Last Post: dhanabhagya
  variable valve timing full report project report tiger 11 15,528 27-09-2016 12:25 PM
Last Post: anusree
  Destructive and non-destructive testing full report project topics 4 16,411 16-09-2016 01:00 PM
Last Post: anusree
  SEMINAR ON LATHE MACHINE PPT project girl 2 11,100 26-07-2016 12:38 PM
Last Post: visalakshik
  solar car full report project report tiger 12 28,996 19-07-2016 11:31 AM
Last Post: jaseela123
Thumbs Up Design of an IC Engine Piston -Report & Presentation mechieprojects 1 0 11-07-2016 02:04 PM
Last Post: dhanabhagya
Thumbs Up Design and Analysis of Rocket Nozzle-Full Report and Presentation mechieprojects 3 467 09-07-2016 12:47 PM
Last Post: dhanabhagya
This Page May Contain What is HEAT EXCHANGER SEMINAR REPORT And Latest Information/News About HEAT EXCHANGER SEMINAR REPORT,If Not ...Use Search to get more info about HEAT EXCHANGER SEMINAR REPORT Or Ask Here